当前位置:首页 > 资讯 > 茶资讯> 正文

民用建筑冷却塔基础知识

2022-04-13 09:20:08热度:61°C

 

冷却塔中的散热关系:

在湿式冷却塔中,热水的温度高,流过水表面的空气的温度低,水将热量传给空气,由空气带走,散到大气中去,水向空气散热有三种形式:①接触散热、②蒸发散热、③辐射散热。冷却塔主要靠前两种散热,辐射散热量很小,可勿略不计。

蒸发散热原理:

蒸发散热通过物质交换,即通过水分子不断扩散到空气中来完成。水分子有着不同的能量,平均能量有水温决定,在水表面附近一部分动能大的水分子克服邻近水分子的吸引力逃出水面而成为水蒸气,由于能量大的水分子逃离,水面附近的水体能量变小,因此,水温降低,这就是蒸发散热,一般认为蒸发的水分子首先在水表面形成一层薄的饱和空气层,其温度和水面温度相同,然后水蒸气从饱和层向大气中扩散的快慢取决于饱和层的水蒸气压力和大气的水蒸气压力差,即道尔顿(Dolton)定律,可用图1表示此过程。

冷却水塔的工作原理:

实际上冷却水塔工作原理就是上述水蒸发热质交换的运用,即将热水喷洒在散热材表面与通过之移动空气相接触,此际热水与冷空气之间产生湿热之热交换作用,同时部分的热水被蒸发,也即蒸发水汽中其蒸发潜热被排放至空气中,最后经冷却后的水落入水槽内,然后再回到所需设备利用、循环,具体见图2。

根据热力学定律,热水经过冷却塔时,放出之热量相等空气由入口至出口时所吸收之热量。

L×(t2-t1)=G×(h2-h1)

L/G=(h2-h1)/(t2-t1)=e/R

其质量之传递可以下列公式表示:

G×eg=ka(EI—eg)dv -(1)

eg:空气总质量热焓;

k:冷却塔单位面积之热惯流率系数

a:常数

EI:在一定水温时饱和空气热焓,cal/kg(BTU/Ib)

冷却塔有效容积(m3、ft3):

图3为冷却塔冷却过程曲线图,上端之曲线为水的运转线,起始热水温度A点至冷水温度B点为止;下端以斜线C-D为空气运转线,C点位置在相当于入风口湿球温度之热焓处,水与空气比(L/G)等于空气运转线C-D之斜率,D点表示出风口空气温度,斜率C-D之投影长度为冷却温度差,F点表示出风口空气之湿球温度。

积分值

为冷却过程中产生之热传递单位数,其值等于图3中之ABCD四点构成面积,此值等于冷却塔之特性值,其值随水与空气之比率而变化。

kaV/L=(L/G)n×C

kaV/L:冷却塔特性质;L/G:水/空气比;C:试验常数;N:试验常数;Ka:填料容积;散质系数;V:填料体积;

冷却塔性能参数:

1.冷却效能:

部分人有一个错误的概念,就是以冷幅作为冷却水塔效能的标准,并以着来选择合适的散热量,其实冷幅是冷却水塔运作的反映与效能是没有直接之关系。

热量是循环系统内所产生的负荷,它的单位为千卡/小时(Kcal/HR)计算公式如下:热量=循环水流量×冷幅×比热系数

热量负荷和冷却水塔的效能是没有直接关系,所以无论冷却水塔的体积大小,当热量负荷和循环水流量不变而运作下,在理论上冷幅都是固定的。

若一座冷却水塔能适合以下之条件而运作:

i)出水温度为32℃及37℃

ii)循环水流量为 200L/S

iii)环境湿球温度为 27℃

iv)逼近=32-27=5℃

v)冷幅=37-32=5℃

计算其热量应为Kcal/HR

此冷却水塔也能适合以下之条件有效地运作:

i)出水温度为33℃及43℃

ii)循环水流量为 200L/S

iii)环境湿球温度为 23℃

iv)逼近=33-23=10℃

v)冷幅=43-33=10℃

计算其热量应为Kcal/HR

从上述举例可显示出相同冷却水塔可在不同热量下运作,而热量的差别示极大,所以不能单靠冷幅来衡量冷却水塔的效能。

前文提及冷却水塔的散热量直接受环境湿球温度影响,而以上两列因环境湿球温度有差别,导致逼近不同,所以同一冷却水塔能在以上两条件下运作如常,证明冷却水塔的效能是直接与逼近有密切关系而不能单以冷幅计算。

2.蒸发耗损量

当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明:

令:进水温度为 T1℃,出水温度为T2℃,湿球温度为Tw,则

*:R=T1-T2 (℃)--(1)

式中:R:冷却水的温度差,对单位水量即是冷却的热负荷或制冷量Kcal/h

对式(1)可推论出水蒸发量的估算公式

*:E=(R/600)×100% --(2)

式中:E--当温度下降R℃时的蒸发量,以总循环水量的百分比表示%,600--考虑了各种散热因素之后确定之常数。

如:R=37-32=5℃

则E={(5×100)/600}=0.83%总水量

或e=0.167%/1℃,即温差为1℃时的水蒸发量

*:A=T2-T1 ℃ --(3)

式中:A--逼近度,即出水温度(T2)逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取A≥3℃(CTI推进A≥5 oF即2.78℃)A<不是做不到,而是不合理和不经济。

3.漂水耗损量

漂水耗损量的大小是和冷却水塔(是否取用隔水设施),风扇性能(包括风量、风机及风扇叶角度的调整以及它们之间的配合等),水泵的匹配以及水塔的安装质量等因素有关,通常它的耗损量是很少的,大约在冷却器水总流量的0.2%以下。

4.放空耗损量

由于冷却回水不断的蒸发而令其变化(使水质凝结)这凝结了的冷却回水能使整个循环系统内产生腐蚀作用及导致藻类生长,所以部分的冷却回水要定期排出,以便补充更新,而这排出的冷却回水量,就称为〖放空量〗。

通常此放空量控制在冷却回水总量的0.3%或由其所需要水质的优劣而定。

放空量B=E/(N-1)-C

B --放空量(%,L/min)

E --蒸发量(%,L/min)

N --凝结量

C --漂水量(%,L/min)

5.补充量

上述提及的冷却塔回水耗损量要不断补充,而补充量的计算如下:

M=E+C+B

M --补充量

E --蒸发耗损量

C --漂水耗损量

B --放空量

假设:蒸发耗损量=0.83%

漂水耗损量=0.1%

放空耗损量=0.25%

补充量=0.83+0.1+0.25=1.18%

来源:互联网。

相关文章

SQL Error: select id,classid,MATCH(title) AGAINST('35815135 51352908 29085494 54943268 32684020 40204394 43942789 27892001 20015410 54104222' IN BOOLEAN MODE) as jhc from ***_enewssearchall where (id<>334115) and MATCH(title) AGAINST('35815135 51352908 29085494 54943268 32684020 40204394 43942789 27892001 20015410 54104222' IN BOOLEAN MODE) order by jhc desc,infotime desc limit 0, 6